• P. A. Finn, I. E. Jacobs, J. Armitage, R. Wu, B. D. Paulsen, M. Freeley, M. Palma, J. Rivnay, H Sirringhaus, C. B. Nielsen Effect of polar side chains on neutral and p-doped polythiophene  J. Mater. Chem. C2020, 8, 16216–16223.
  • Tao X, Wan K, Deru J, Bilotti E and Assender HE  Thermoelectric behaviour of Bi-Te films on polymer substrates DC-sputtered at room-temperature in moving web deposition. Surface and Coatings Technology  385, 2020.
  • Tang W, Zhang J, Ratnasingham SR et al., Substitutional doping of hybrid organic-inorganic perovskite crystals for thermoelectrics, Journal of Materials Chemistry A, 8, 13594 – 13599, 2020. DOI: 10.1039/d0ta03648j
  • Liu Z, Liu T et al., Controlling the Thermoelectric Properties of Organometallic Coordination Polymers via Ligand Design, Advanced Functional Materials, 2003106, 2020. DOI: 10.1002/adfm.202003106

  • Burton MR, Boyle CA, Liu T, McGettrick JD, Nandhakumar I, Fenwick O, and Carnie M, Full Thermoelectric Characterization of Stoichiometric Electrodeposited Thin Film Tin Selenide (SnSe), ACS Appl. Mater. InterfacesDOI: 10.1021/acsami.0c06026
  • Milita S,  Liscio F, Cowen L, Cavallini M, Drain BA, Degousée T, Luong S, Fenwick O, Guagliardi A, Schroeder BC and Masciocchi N, Polymorphism in N,N′-dialkyl-naphthalene diimides Journal of Materials Chemistry C,  2020. DOI: 10.1039/C9TC06967D


  • Liu T, Zhao X, Li J, Liu Z, Liscio F, Milita S, Schroeder BC, Fenwick O Enhanced control of self-doping in halide perovskites for improved thermoelectric performance, Nature Communications, 10(1):5750, 2019 DOI: 10.1038/s41467-019-13773-3
  • Liu T, Yue SY, Ratnasingham SR, Degousée T, Varsani PR, Briscoe J, McLachlan MA, Hu M, Fenwick O Unusual thermal boundary resistance in halide perovskites: A way to tune ultralow thermal conductivity for thermoelectrics, ACS Applied Materials and Interfaces, 2019 DOI: 10.1021/acsami.9b14174
  • Harzheim, A. et al. The role of metallic leads and electronic degeneracies in thermoelectric power generation in quantum dots. Phys. Rev. Res. 2, 13140, 2019. 10.1103/PhysRevResearch.2.013140
  • Qiu M. and Baxendale M. Quantum-Tunneling Controlled Thermoelectricity in Polymers, Organic Electronics, 2019 10.1016/j.orgel.2019.105553
  • K. Kang, S. Schott, D. Venkateshvaran, K. Broch, G. Schweicher, D. Harkin, C. Jellett, C. B. Nielsen, I. McCulloch, H. Sirringhaus Investigation of the Thermoelectric Response in Conducting Polymers Doped by Solid-State Diffusiion, Mater. Today Phys., 8, 112–122, 2019. DOI: 10.1016/j.mtphys.2019.02.004
  • Wan K., Taroni P. J., Liu Z, Liu Y, Santagiuliana G, Hsia I-C, Zhang H, Fenwick O, Krause S, Baxendale M, Schroeder BC, Bilotti E, Flexible and Stretchable Self-Powered Multi-Sensors Based on the N-Type Thermoelectric Response of Polyurethane/Nax(Ni-ett)n Composites, Advanced Electronic Materials, 1900582, 2019.
  • Paleo AJ, Vieira EMF, Wan K, Bondarchuk O, Cerqueira MF, Goncalves LM, Bilotti E, Alpuim P and Rocha AM, Negative thermoelectric power of melt mixed vapor grown carbon nanofiber polypropylene composites, Carbon  150, 408-416, 2019.


  • Burton MR, Liu T, McGetterick J, Mehraban S, Baker J, Pockett A, Fenwick O, Carnie MJ, Thin film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultra-Low Thermal Conductivity, Advanced Materials, 2018, 1801357 10.1002/adma.201801357.
  • Taroni PJ, Santagiuliana G, Wan K, Calado P, Qiu M, Zhang H, Pugno NM, Palma M, Stingelin-Stutzman N, Heeney M, Fenwick O, Baxendale M, and Bilotti E Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends, Adv. Funct. Mater. 2018, 1704285. 10.1002/adfm.201704285
  • Harzheim, A. et al. Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictions. Nano Lett. 18, 7719–7725, 2018. DOI: 10.1021/acs.nanolett.8b03406


  • Bilotti E, Fenwick O, Schroeder BC, Baxendale M, Taroni Junior P, Degousee T, Liu Z (2017) In Comprehensive composite materials II Editors: Zweben CH, Beaumont PWR. 6: 408-430. DOI
  • Fenwick O and Orgiu E (2017). Non-conventional charge transport in organic semiconductors: magnetoresistance and thermoelectricity.  Molecular Systems Design and Engineering  47-56. 10.1039/c6me00079g
  • Cowen LM, Atoyo J, Carnie MJ, Baran D, and Schroeder BC (2017) . Organic Materials for Thermoelectric Energy Generation ECS Journal of Solid State Science and Technology vol. 6, (3) N3080-N3088. 10.1149/2.0121703jss


  • Li Y, Porwal H, Huang Z, Zhang H, Bilotti E and Peijs T (2016). Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning. Journal of Nanomaterials  vol. 2016, 10.1155/2016/4624976



  • Taroni PJ, Hoces I, Stingelin N, Heeney M and Bilotti E (2014). Thermoelectric materials: A brief historical survey from metal junctions and inorganic semiconductors to organic polymers. Israel Journal of Chemistry  10.1002/ijch.201400037


  • Baxendale M, Lim KG, Amaratunga GAJ (2000) Thermoelectric power of aligned and randomly oriented carbon nanotubes Physical Review B, 61(19), 12705. DOI: 10.1103/PhysRevB.61.12705